Representatives for unipotent classes and nilpotent orbits

نویسندگان

چکیده

Let $G$ be a simple algebraic group over an algebraically closed field $k$ of characteristic $p$. The classification the conjugacy classes unipotent elements $G(k)$ and nilpotent orbits on $\operatorname{Lie}(G)$ is well-established. One knows there are representatives every class as product root orbit sum elements. We give explicit in terms Chevalley basis for eminent classes. A (resp. nilpotent) element said to if it not contained any subsystem subgroup subalgebra), or natural generalisation type $D_n$. From these representatives, straightforward generate given class. Along way we also prove recognition theorems identifying both exceptional groups.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherical Nilpotent Orbits and Unipotent Representations

then the coadjoint orbits of SL (2,R) fall into three basic classes; according to whether the Casimir function B (Z,Z) = h + xy is positive, negative or zero.(Here Z ≡ x ∗X + h ∗H + y ∗ Y .) The nature of these orbits becomes a little clear if we adopt a basis for which B is diagonal, setting Z0 = X − Y Z2 = X + Y Z3 = H we find B (Z,Z) = −z 0 + z 2 + z 3 That is, the invariant bilinear form on...

متن کامل

Computing representatives of nilpotent orbits of θ-groups

We describe two algorithms for finding representatives of the nilpotent orbits of a θ-group. The algorithms have been implemented in the computer algebra system GAP (inside the package SLA). We comment on their performance, and we apply the algorithms to obtain lists of N-regular automorphisms of simple Lie algebras of exceptional type.

متن کامل

Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits

Let G be a complex reductive group. We study the problem of associating Dixmier algebras to nilpotent (co)adjoint orbits of G, or, more generally, to orbit data for G. If g = 0 + n + in is a triangular decomposition of g and 0 is a nilpotent orbit, we consider the irreducible components of 0 n n, which are Lagrangian subvarieties of 0. The main idea is to construct, starting with certain "good"...

متن کامل

Series of Nilpotent Orbits

We organize the nilpotent orbits in the exceptional complex Lie algebras into series and show that within each series the dimension of the orbit is a linear function of the natural parameter a = 1, 2, 4, 8, respectively for f4, e6, e7, e8. We observe similar regularities for the centralizers of nilpotent elements in a series and graded components in the associated grading of the ambient Lie alg...

متن کامل

Tempered Representations and Nilpotent Orbits

Given a nilpotent orbit O of a real, reductive algebraic group, a necessary condition is given for the existence of a tempered representation π such that O occurs in the wave front cycle of π. The coefficients of the wave front cycle of a tempered representation are expressed in terms of volumes of precompact submanifolds of an affine space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2021

ISSN: ['1532-4125', '0092-7872']

DOI: https://doi.org/10.1080/00927872.2021.1986519